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GRADIENT METHOD OF OPTIMAL CONTROL APPLIED 
TO THE OPERATION OF A DAM WATER GATE 
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Deparrmenr of Civil Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo, J A P A N  

SUMMARY 

An extension of the authors' previous methods is presented for the optimal control of flood propagation 
via a dam gate, based on a combination of the finite element and gradient methods. It is assumed in 
previous papers that the control duration is the same as the duration of the flood. However, the duration 
of the control does not necessarily coincide with that of the flood flow. To overcome this difficulty, the 
gradient method is applied to solve the free terminal time-fixed terminal condition problem. It is shown 
that the water elevation can be controlled exactly the same as with the previously presented method. It is 
also shown that the computation can be terminated at a far shorter time than the terminal time of the flood. 
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1. INTRODUCTION 

Previous studies on dam gate control have all been conducted without considering a hydraulic 
model.'-'' Recently Kawahara and his group presented optimal control methods to obtain 
strategies to control dam water gates for the prevention of flood flow by considering a hydraulic 
model based on the shallow water equation.' '-16 The model is introduced to express the 
propagation of a wave generated by the sudden operation of a dam gate. For instance, 
the generation of a reflective wave towards the upstream area through a reservoir causes 
tremendous damage along the coast of the upstream area. Such phenomena must be described 
by a hydraulic model. To  obtain useful information on dam gate control to solve such problems, 
Kawahara and his group presented optimal control methods based on tracking control 
techniques and the finite element method.' '-14 The numerical examples given in these papers 
show that the water elevation of the reservoir was well controlled by the tracking control method. 
However, this method requires the whole pattern of the flood to be described as a time function 
whose magnitude and duration are known. This means that the control of the dam gate can 
only start after the flood has passed through the reservoir. To overcome this impractical 
defect, the authors presented a predictive control method which was shown to be useful in 
practice. 5 * 1  

The previous control methods assume that the starting and final times of the control 
correspond to those of the flood flow. However, it is not necessarily the case that the final time 
of the control is the same as the final time of the flood. The final time of the control may be 
longer than that of the flood in which case the control is not satisfactory. If the final time of 
the control can be shortened, this will save computational effort. In this case the final time of 
the control is unknown and must be determined by the condition that the water elevation 
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reached at the final time is the still water level. This type of control is referred to as the free 
terminal time-fixed terminal condition problem. 

This paper presents an optimal control method using a combination of the finite element and 
gradient methods, which as utilized in this paper is described as follows. The optimal control 
problem can be defined as one of finding an optimal control vector so as to minimize the 
performance function within the constraint of the state equation. The terminal time of the control 
in this case is unknown and must be determined by the terminal condition. Thus an iteration 
procedure is required to solve the problem. At this state the variations in the control vector and 
terminal time must be defined and determined. The variation in the terminal condition can be 
formulated in a useful form by introducing an adjoint function which is a function of the control 
vector, terminal time and terminal condition. Assuming a small value of the variation in the 
terminal condition, the variations in the control vector and terminal time are computed. Then, 
by comparing the newly obtained and previously assumed variations in the terminal condition, 
the iteration procedure may be continued. The control vector and terminal time can be obtained 
if their variations are computed to be small enough to satisfy the terminal condition. 

In the present method only the linear shallow water equation is used as the governing equation. 
The extension to the non-linear equation is straightforward. The two-step explicit finite element 
method is used to solve the governing equation, Euler-Lagrange equation and adjoint equation. 
To show the adaptability of the present method, several numerical examples are computed. The 
method presented in this paper is shown to be useful to solve the free terminal time-fixed terminal 
condition problem. 

2. BASIC EQUATIONS 

Wave propagation through a reservoir made by a dam can be expressed by the two-dimensional 
shallow water equation. The linearized shallow water equation without viscosity and friction is 
used because of its simplicity. The purpose of this paper is to show the strategy of operation of 
the water gate of the dam. Therefore it is not necessary to use a complicated equation. The effect 
of non-linearity has already been discussed in Reference 14. Let t be time and xi  ( i  = 1,2) be a 
Cartesian co-ordinate placed at  the still water level as shown in Figure 1. The origin of the 
co-ordinate is placed at the top of the water gate. 

respectively, the equations of 
motion and continuity can be written as 

Denoting the mean discharge and water elevation as qi and 

qi + ghc,i  = 0 in R, 

i + qi, i  = o in R, 

where R represents the whole domain and g and h are the gravitational acceleration and water 
depth respectively. The flood wave is characterized by the water discharge at the inlet S, as 

where 4, is a hydrograph of the flood and is a prescribed function of time t .  This is given by 
the observation of the flood at the upstream site. 

The water elevation is controlled by the outflow discharge i j i  which is calculated by the control 
method. The mean outflow discharge i j i  is specified on the outlet boundary S, as 
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Figure 1. Dam model 

where qi is a function of time to be determined by the optimal theory. The restriction condition 
of the water gate must be imposed on the outflow discharge. The precise formulation is discussed 
in Reference 17. 

The initial conditions are given as 

c = to at r = to ,  (5 )  

(6) A 0  
qi = qi at t = to. 

The optimal control is formulated to find the function qi such that the performance function 

J = f 1; (QC’ + Rijqiq,) dR dt (7) 

is minimized through the time duration [to, T,]. In equation (7) Q and Ri j  are weighting functions 
which determine the adjustment of the difference in dimension between and qi. The final time 
T, of the control is not necessarily coincident with the final time rf of the flood. Thus the final 
time T, is unknown but can be determined by the condition that the final water elevation and 
water discharge should be zero as soon as possible, i.e. the equation 

must be satisfied, where s and w are constants. In this paper the optimal control expressed by 
the function J in equation (7) is discussed. Thus the strategy of operation of the water gate of 
the dam can be obtained based on the minimization of the function J. 

The optimal control strategy presented in this paper is to find 4,. on S, that minimizes the 
performance function J under the constraints of (1)-(4), initial conditions (5) and (6) and final 
condition (8). The duration of the control, T, can be shorter than the duration of the flood, r f .  
If the control computation is limited by T,, the running time of computation can be intensively 
saved. 
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3. FINITE ELEMENT EQUATION 

The weighted residual equations are obtained by employing the conventional Galerkin method 
applied to the governing equations. The standard finite element procedure based on the linear 
triangular element leads to the equation 

where {x} represents the water elevation and velocity at nodal points of the flow field. This is 
referred to as the state vector and 

in which mu is the interpolation function for both discharge and water elevation. 

discharge and flood discharge: 
The state equation can be obtained in the following form by separating the terms of control 

where {x} in the second line designates the discharge and water elevation at nodal points except 
those located on S ,  and Sf, {u} and {f} are nodal values of control discharge qi and flood 
discharge Gi respectively and [A], [B] and [C] are the corresponding coefficient matrices. 

For the numerical integration in time of the state equation (lo), a time-marching numerical 
integration scheme is used. The total time interval to be analysed is divided into a large number 
of short time intervals, one of which is denoted by Ar. Representing the time point by n, the 
two-step explicit method can be applied to equation (10): for the first step 

and for the second step 

starting from the initial condition equations ( 5 )  and (6). In equations (1 1) and (12) the lumped 
coefficient matrix [a] is introduced to obtain the full explicit scheme. To secure stability, the 
mixed coefficient matrix [A] is used as 

where e is referred to as the lumping parameter. 
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The optimal control problem is formulated so as to determine { u }  for the control function to 
minimize the performance function 

under the state equation with the initial condition {xo}, where [SJ and [R] are weighting matrices 
and to and T, are the initial and final times respectively of the time domain. The final time T, 
is unknown and is decided on the condition that 

For the optimization technique to seek the minimum value of J in equation (14) with the 
state equation as constraints, the gradient method is used to search for the minimum value of 
J along the direction of the gradient of J. 

4. GRADIENT METHOD 

To explain the optimal control method employed in this paper, it is worthwhile to summarize 
the basic formulation of the problem again. The problem treated in this paper can be classified 
as the so-called free terminal time-fixed end condition problem. The state vector {x} is defined as 

with the initial condition 

Find the control vector { u }  so as to minimize the performance function 

where T, is the terminal time, which is unknown and is determined by the terminal condition 

N(x(T,), T,) = 0. (18) 

It is well known that the minimizing function {u} for J can be obtained by introducing the 
Hamiltonian function 
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where {p} denotes a Lagrange function. The Euler-Lagrange equation and transversality 
condition can be described as 

d H  
{P} = - __ = -CSl{X} - "41T{P}, (20) 

{P(T,)} = (0). (21) 

a{x} 

The control vector { u }  can be obtained based on {p}, but this is impossible at this stage 

To solve the problem, consider small variations in the control vector, {Su} ,  and terminal time, 
because the terminal time T, is not yet determined. 

S T , ,  assuming the existence of T,. Introduce the adjoint vector {z} which is defined by 

The variation in N(x(T,),T,) for the variations in the state vector, {Sx}, and terminal time, ST, ,  
can be written in the form 

T' aN 
6N = - ST,  + { z } ~  - Sx(T,)dt, 

(d:)Tf 10 ax 

where 

dN dN 
dt at 

After some calculation the second term of equation (24) can be described as 

Tr aF 
bN = - S T ,  + {z}' --- SU dt, 

(:)T, j t o  

where 

aF 
- = [ E l .  au 

The variation in the performance function J can be obtained in the form 

5. SOLUTION PROCEDURE OF GRADIENT METHOD 
To solve the optimal control problem, the iteration method can be applied based on { S u }  and 
ST,.  For this purpose a new performance function is introduced for {Su} and S T ,  considering 
the penalty of the restrictive condition equation (26): 

1 T r  d F  SJ = 63 + f ~ ( d T , ) ~  + 1; $Su)TIWISu dt + { Y } ~ [ ( ? ) , P T ,  + lo {z}' au SU dt - SN , (29) 
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where {v)  is the Lagrange multiplier, a is a weighting value and [Wj is a weighting matrix. 
The first variation in the new performance function can be obtained in the form 

Seeking the minimum value of the new performance function, {Su)  and S T ,  can be derived as 

where {Su} is the difference between the previous control function and the new control function, 
which is expected to be an improved function, and ST,  is the difference between the previously 
assumed terminal time of control duration and the newly obtained terminal time. 

Substituting {Su}  and S T ,  into equation (26), the variation in N(x(T,), 7J can be described as 

where 

The Lagrange multiplier {v} can be obtained in the form 
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Substituting equations (31) and (32) into equation (28), the variation in the performance 
function 6J can be derived as 

where 

The purpose is to find the control function { ~ ( t ) }  and control terminal time T, which minimize 
the performance function J and satisfy N(x(T,),  &) = 0. To do this, the following method is 
employed in this study. The terminal time T, is assumed to be obtained from the relation 

holding the control function {u(t)} constant. Then the control function may be determined to 
minimize the performance function 6.7, holding the terminal time & constant. 

6. COMPUTATIONAL ALGORITHM 

The algorithm of the gradient method employed in this paper is described as follows. First, 6N 
is assumed as a small value, e.g. 

Secondly, the adjoint function { z }  can be obtained by solving equation (22) backwards from the 
final condition equation (23). Thirdly, the functions I", I N j ,  I j j  and {v} can be computed. 
Fourthly, 6N can be computed based on the renewed values using equation (33). Fifthly, by 
comparing the computed 6N with the assumed 6N, 6T, can be verified. If 6N computed is not 
close enough to 6N assumed, assign the constant a a larger value and recompute. If 6N computed 
is satisfactory, 6& can be computed using equation (32). Sixthly, using the computed 6T,, the 
total control time T, can be determined. Finally, the control function {u(t)} can be derived to 
minimize the performance function J based on the terminal time T, using equation (31). The 
algorithm can be described as follows, in which the tolerance E is a small number. 
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1. Assume {uo},  T,, and set i = 0. 
2. Obtain { x i }  using {u,} ,  Ti by equations (1 1) and 

(12) and obtain Ji. 
3. Solve Lagrange function {p} and adjoint func- 

tion {z}: {P} = - C ~ { X }  - CAIT{p}, {P(T,i)} = O ,  

4. Assume SN* using bN* = -6 ,  * N(x(T,,),Ti) and 

5. Solve {hi} and ST,, using equations (3 1) and (32). 
6. Obtain { x i  + 

{i} = -CAIT{zJ9 { Z ( T , i ) )  = CSl{x(Ti))* 

solve { v }  by equation (36). 

using {ui + = Ti + 1. 

choose larger a ELSE chose smaller a. 
IF N i  - N i  + 

T O  5. 

(1 1) and (1 2) and solve { p}, { z } .  

T i  + 

IF bN - bN* 2 0 THEN 

2 0 THEN GO TO 7 ELSE GO 

7. Obtain { x i  + 1}  using (ui + Ti + by equations 

8. Assume 6 N *  using bN* = - E ,  * N ( x ( T i  + 1), 

and solve { v }  by equation (36). 
9. Solve {bu,}  using equation (31). 

qi + 1) < E,  Jz ( u ~ + ~  - UJ2dt < E 

and obtain 

IF  Ji - J i  + > OTHEN i = i + 1 and GO TO 2 
ELSE choose larger [Wl and GO TO 9. 

10. I F  N ( x ( T i  + 

THEN STOP ELSE GO TO 11. 
11. Obtain { x i  + 1}  using {ui + 1}, Ti + 

J i  + 1 -  

START z 
lz) 
(9( 

4 
9 

STOP 

7. NUMERICAL EXAMPLES 

7. I .  One-dimensional channel 

As a numerical example a simple one-dimensional channel has been computed to test the 
adaptability of the present method. On the inlet boundary S,  the inflow discharge of the flood 
assumed is imposed and the normal velocity component is given as zero at the horizontal walls 
S, in Figure 2. The inflow dischzrge is a function of time and is shown in Figure 3(a). The 
weighting matrices were selected as R = O*OOOl and Q = unit matrix and the time increment At 
was 0-6 s. The results computed without the control and by the gradient method are compared 
in Figure 3. The results shown by solid lines are those by the gradient method and the results 
marked as circles are those without the control. By controlling the discharge at the outlet as 
shown in Figure 3(c), the water elevation upstream and downstream can be controlled as shown 
in Figures 3(d)-3(f) at sites A, B and C respectively. It is seen in Figure 3 that an almost flat 
water elevation has been obtained. The results computed by the tracking control of the 
Sakawa-Shindo method14 and by the gradient method are compared in Figure 4. The results 

A B 
Figure 2. Finite element mesh for one-dimensional channel problem. Length: 4OOO m. Width: 200 m. Depth: 60 m, S,: 

inlet boundary. S,: outlet boundary, S,: boundary condition, NX: 123, MX: 160 
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GRADIENT METHOD 
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( f )  Water elevation at point C 

Figure 3 

shown by solid lines are those by the gradient method and the results marked as circles 
are those by the Sakawa-Shindo method. In Figures 4(c) and 4(fJ the computed results 
of the discharge and water elevation respectively at point C obtained by the present method 
are shown in comparison with the results obtained by the Sakawa-Shindo method in which 
the duration time of the control (T,) is assumed to be coincident with the terminal time of the 
flood (tr). Both sets of results are completely coincident for both discharge and water 
elevation. 
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Figure 4 

7.2. Control of Moriyoshizan dam gate 

The Moriyoshizan dam is constructed to reserve water for irrigation purposes. The dam is 
located at site C in Figure 5. The dam is 80 m high and 200 m long. A water gate is provided 
at the crest of the dam. The reservoir is about 5 km long and 700 m wide. The average water 
depth is 60 m. The main flood flows from the Moriyoshi river to the reservoir; the flow point 
is indicated as site A in Figure 5. A typical hydrograph is shown in Figure qa). 
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w i n )  

B 
Figure 5. Finite element mesh for Moriyoshizan dam problem 
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The computation is carried out via the gradient control method based on the finite element 
idealization represented in Figure 6. The total numbers of finite elements and nodal points are 
140 and 224 respectively. The weighting matrices selected were R = OOOO1 and Q-unit matrix. 
The time increment chosen was Ar = 0.6 s. The results computed without the control and by 
the gradient method are compared in Figure 6. The results shown by solid lines are those by 
the gradient method and the results marked as circles are those without the control. By 
controlling the discharge at the outlet as shown in Figure qc), the water elevation upstream 
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and downstream can be controlled as shown in Figures 6(d)-6(9 at sites A, B and C respectively. 
It is seen in Figure 6 that an almost flat water elevation has been obtained. The results computed 
by the Sakawa-Shindo method and by the gradient method are compared in Figure 7. The 
results shown by solid lines are those by the gradient method and the results marked as circles 
are those by the Sakawa-Shindo method. In Figures 7(c) and 7(9 the computed results of the 
discharge and water elevation respectively at point C obtained by the present method are shown 
in comparison with the results obtained by the Sakawa-Shindo method in which the duration 
time of the control (T,) is assumed to be coincident with the terminal time of the flood ( to.  Both 
sets of results are completely coincident for both discharge and water elevation. The computed 
duration time of the control is much shorter than the terminal time of the flood. The practical 
running time of computation is wholly dependent on the duration time of the control. Thus 
practical computation time can be saved by the present method. 

8. CONCLUSIONS 

An optimal control method for flood control has been presented taking into account the fact 
that the duration of the control is not necessarily coincident with the duration of the flood. The 
terminal time of the control is computed by the terminal condition that the water elevation and 
control discharge at the terminal state should be zero. The computed water elevation and velocity 
are the same as those obtained by the tracking control technique presented in previous papers. 
The computed terminal time is much shorter than the terminal time of the flood. Thus the 
practical running time of computation can be markedly reduced by the present method. 
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